Simultaneous effects of hydrostatic stress and an electric field on donors in a GaAs-(Ga, Al)As quantum well
نویسنده
چکیده
Theoretical calculations on the influence of both an external electric field and hydrostatic stress on the binding energy and impurity polarizability of shallowdonor impurities in an isolated GaAs–(Ga, Al)As quantum well are presented. A variational procedure within the effective-mass approximation is considered. The pressure-related –X crossover is taken into account. As a general feature, we observe that the binding energy increases as the length of the well decreases. For the low-pressure regime we observe a linearly binding energy behaviour. For the high-pressure regime the simultaneous effects of the barrier height and the applied electric field bend the binding energy curves towards smaller values. For low hydrostatic pressures the impurity polarization remains constant in all cases with an increasing value as the field increases. This constant behaviour shows that the small variations in well width, effective mass, and dielectric constant with pressure do not appreciably affect polarizability. For high hydrostatic pressure, we see a non-linear increase in polarizability, mainly due to the decrease of barrier height as a result of the external pressure, which allows further deformation of the impurity.
منابع مشابه
Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N / GaN Multiple Quantum Well Solar Cells
The present study was conducted to investigate current density of0.3 0.7 Al Ga N/ GaN multiple quantum well solar cell (MQWSC) under hydrostaticpressure. The effects of hydrostatic pressure were taken into account to measureparameters of 0.3 0.7 Al Ga N/ GaN MQWSC, such as interband transition energy, electronholewave functions, absorption coefficient, and dielectric con...
متن کاملEffects of Gravitational and Hydrostatic Initial Stress on a Two-Temperature Fiber-Reinforced Thermoelastic Medium for Three-Phase-Lag
The three-phase-lag model and Green–Naghdi theory without energy dissipation are employed to study the deformation of a two-temperature fiber-reinforced medium with an internal heat source that is moving with a constant speed under a hydrostatic initial stress and the gravity field. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions ...
متن کاملHydrostatic Pressure and Electric-field Effects on the Shallow Donor Impurity States in GaAs-Ga0.7Al0.3As Quantum-well Wires
Using a variational procedure within the effective-mass approximation, we have made a theoretical study of the effects of hydrostatic pressure and applied electric fields on the binding energy of a shallow-donor impurity in square-transversal section GaAs-Ga0.7Al0.3As quantum-well wires. The electric field is applied in a plane of the transversal section of the wire and many angular directions ...
متن کاملCombined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure
In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and mag...
متن کاملEffect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot
The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are i)negative in the triplet state contrast to the singlet state ii) it increases with increase in pressure iii)further...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002